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Abstract

Existing conventional online secondary path modeling algorithms for active noise control system have the characteristic
that the operation of the controller and the modeling process of the secondary path are mutually interfered. So this
unwanted interference will degrade the noise-reducing performance and even the stability of the system. A new finite
impulse response (FIR) filter-based online secondary path identification algorithm is proposed to eliminate the interactive
disturbances. Compared with existing algorithms, the proposed method does not need feeding extra noise to the secondary
source, and is also different from the overall modeling method using the control output. Instead, the facts that the FIR
filters have coefficient vectors equivalent to impulse responses corresponding to the transfer functions of physical systems
are utilized, and when the coefficients of the control filter are updated, the filter coefficient vectors are different at different
iteration steps because of estimation errors. Furthermore, in the method, the modeling of the secondary path is relatively
independent of the active noise control system, and the reference signal is used as the input for the system identification.
Therefore, the unwanted disturbances between the operation of the ANC controller and the identification of the secondary
path are eliminated completely, and the complexity of ANC system is greatly reduced. Computer simulations show its
effectiveness, robustness, and the advantage of low residual noise.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The filtered-X LMS (FXLMYS) algorithm is one of the most popular adaptive filtering algorithms in active
noise control because of its simplicity, robustness and relatively low computational load. As an extension of
LMS algorithm for ANC systems, the FXLMS algorithm takes account of the presence and influence of the
secondary path transfer function between the output of the control filter and the error sensor. The block
diagram of the ANC system with FXLMS algorithm is illustrated in Fig. 1 [1]. In this figure, S(z) is the
transfer function of the secondary path which comprises the D/A converter, smoothing filter, power amplifier,
secondary loudspeaker, acoustic path from the loudspeaker to error microphone, error microphone, anti-
aliasing filter, and A/D converter. In order to compensate the influence of the secondary path, the reference
signal must be filtered by the secondary path transfer function estimation S‘(z), and the modeling error
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Fig. 1. Block diagram of ANC system with FXLMS algorithm.
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Fig. 2. Block diagram of active control system with online secondary path modeling using additive random noise (Eriksson’s method).

between the secondary path and its estimated model will affect the noise attenuation performance and stability
of the algorithm. Only if the phase difference between the secondary path and the estimated model is less than
90°, the stable convergence of filtered-X LMS algorithm can be guaranteed [2,3]. Therefore, it is very
important for an ANC system that the model of the secondary path be estimated fast and precisely.

If the secondary path is unchanged during the operation of an ANC system, the secondary path can be
modeled offline, and then the estimated secondary path coefficients can be used with the ANC system turned
on. However, in some practical cases, the secondary path may be time varying. The change degrades the noise-
reducing performance and even the stability of the system. So offline modeling of the secondary path cannot
satisfy the robust requirement of the control system. It is necessary and practical to model secondary path
online to ensure the convergence of FXLMS algorithm.

A number of algorithms for online secondary path modeling have been proposed [4—14]. These methods can
be divided into two types. The first approach, as shown in Fig. 2, involving the injection of additional random
white noise, which is uncorrelated with the primary noise x(n) into the ANC system, utilizes a system
identification method to estimate the secondary path [4]. The second one, as shown in Fig. 3, called the overall
modeling algorithm, uses the output of the controller to model S(z) [8].The first approach provides a signal-
independent modeling, so the model obtained is valid for the entire frequency range of interest. It has been
concluded [8] that the first approach is superior to the second approach on convergence rate, speed of response
to changes of primary noise, updating duration, computational complexities. Therefore, the first approach has
been developed greatly in the last decade. Nevertheless, mutual disturbances between the operation of ANC
controller and the modeling of secondary path always exist in the first approach [7], and the prominent
problem is that the injection of a random noise will increase the residual noise level, which cannot be
suppressed by controller. Although the problem can be mitigated by reducing the power of the injected noise,
the convergence rate and precision of the secondary path modeling are decreased. Compared with the first
approach, the second approach does not need feeding extra noise to the ANC system. But this method
involves signal-dependent modeling [8]. It can be seen from Fig. 3 that the reference input x(r) of the filter S'(z)
is correlated with the input y(n) of the filter P(z), so it does not always produce correct model unless some
conditions are satisfied and certain precautions are taken. The second approach was analyzed theoretically in
Ref. [10], and the conditions that the noise control filter should satisfy for optimal online modeling were
obtained. A detailed comparison of the two online modeling approaches can be found in Ref. [8]. To reduce
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Fig. 3. Block diagram of active control system with online secondary path modeling using overall modeling strategy.
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Fig. 4. Block diagram of cross-updated active control system with improved online secondary path modeling using additive random noise
(Zhang’s method).

the undesirable interferences between the operation of the ANC controller and the modeling of secondary
path, several improved techniques have been proposed [5-7,11-13]. Two different methods [5,6] were utilized
to reduce the interference of the active control process in the modeling process, respectively, while [7] focused
on reducing the mutual interferences between the modeling process and the operation of the ANC controller
by using three cross-updated adaptive filters, as illustrated in Fig. 4. The performance of both modeling and
noise reduction has been shown to be greatly improved. On the basis of Ref. [7], a new technique is proposed
in Ref. [11], aiming at decreasing the residual noise level by using the varying auxiliary noise according to the
working status of the ANC system. The convergence rate and whole performance of ANC system with online
secondary path modeling using the injection of a random noise were further improved in Ref. [13].

From the literature review above, it is known that two existing online modeling approaches of secondary
path have been developed, the performance of ANC system with online secondary path modeling has been
improved to a large extent. However, the mutual disturbances between the operation of the ANC and the
identification of the secondary path cannot be eliminated radically. Therefore, the performance of the whole
ANC system is limited.

In this paper, a new online secondary path modeling algorithm is proposed. It is based on the simultaneous
equation method proposed by Fujii et al. [15,16]. Based on the principle of the simultaneous equation method,
the proposed method utilizes the facts that the finite impulse response (FIR) filters have coefficient vectors
equivalent to impulse responses corresponding to the transfer functions of physical systems, and when the
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coefficients of control filter are updated, the filter coefficient vectors are different at different iteration steps to
derive two independent equations which contain the primary path and secondary path online. The secondary
path impulse response is derived by solving the two equations. Using the reference signal as the input for the
system identification, a new system identification technique is adopted to solve the simultaneous equations,
and the modeling of the secondary path is relatively independent of the active noise control system. The paper
is organized as follows. In Section 2, the proposed algorithm is developed and described. In Section 3, the
effect of parameter selection on the algorithm is discussed. Finally, simulation results are presented and
discussed to demonstrate the effectiveness of the proposed algorithm followed by the conclusions.

2. Description of the algorithm
2.1. Principle

The block diagram of the simultaneous equation method is illustrated in Fig. 5. In this figure, the term,
H(z), is the transfer function of an additional filter that models the overall path from the detection sensor to
the error sensor; P(z) is the transfer function of the primary path; S(z) is the transfer function of the secondary
path. For any W(z), in the ideal case that the overall path is modeled by H(z) precisely, the equation is derived
as

H(z) = P(z) — W(2)S(2). (1

So when two different transfer functions of the noise control filter W(z), expressed as W(1, z) and W(2, z),
are set arbitrarily, the additional filter yields two equations related to each transfer function

H(l,z) = P(z) — W(1,2)S(z) 2)
and
HQ2,z) = P(z) — W(2,2)S(2). (3)
Obviously, eliminating P(z) from Egs. (2) and (3) yields the solution
_ H(l,z)—H(2,z)
W2,z)— W(l,z)

S(z) 4

if W(1,2)#W(2,z2).
Practically, all filters are generally formed as FIR filters. So the transfer functions H(z), W(z) and S(z) can
be, respectively, expressed as

H(Z) = /’lo + /’112_1 + /’122_2 4+ 4 thzZ_(N_D + thlz_(N_l), (6)
W(Z) = Wo + le_l + W22_2 4. 4+ }vMizz—(M—z) + ‘VM,IZ_(M_I) (7)
i . P(z) d(n) + — e
A
W(z)
S(z) F>{ LMS
A o +
e(n)
H(2) &)
¢'(n)
s |

Fig. 5. Block diagram of the principle of the simultaneous equation method.
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and
SE) =so+ sz 45z 24tz ED g 2D (8)

where N, M and L are the corresponding filter length.
Fortunately, this type of filter has coefficient vectors equivalent to impulse responses corresponding to
transfer functions. The transfer functions H(z), W(z) and S(z), are hence expressed as coefficient vectors:

H= [ho hy - hN—l}T, )
W = [wo Wi e Wa_g ]T (10)

and
S = [so S] e SL71]T. (11)

Similarly, W(1, z), W(2, z), H(1, z), and H(2, z)are expressed as

W(l) = [wo(1) wi(l) - wiy(D], )
W(Q2) = [wo(2) wi(2) - WM_](Z)}T’ w5
and

According to Egs. (12)—(15), (6) and (7), H(l,z)—H(2,z) and W(2,z) — W(l,z) in Eq. (4) can be
transformed to the differences between coefficient vectors, respectively:

AH = H(1) — H(2)
= [ho(1) = ho2) m(1) = (@) -+ hy (D) = hy1(2)]"
= [Ahg Ahy oo Ahy]' (16)

and
AW = W(2) — W(1)
= [wo@ —wo(1)) wi@Q)—wi()) -+ wy Q) —wya(D)]
=[Awo Awy - Awy ] (17)
Note that Eq. (4) can be rewritten as
{w@,2)—- w(1,2)}S(z) = H(1,2) — H(2,2). (18)

Since the multiplication of transfer functions in Eq. (18) corresponds to the convolution of impulse
responses in time domain, Eq. (18) is accordingly replaced by the convolution of impulse responses in time
domain, Eq. (18) is accordingly replaced by the convolution of AW and S that is equal to AH. Hence, Eq. (18)
can be rewritten as

AH = PS, (19)
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where
wo(2) — wo(1) 0 e 0
wi(2) — wi(l) wo(2) —wo(l) - 0
P= : : . : (20)
wr—1(2) —wr—1(1) wr—2(2) —wro(l) -+ wo(2) — wo(l)

and it should be noted that N and M must be equal to or greater than L. If wy(2) — wo(1)#0, that is, P
is a nonsingular matrix, the unknown impulse response of the secondary path can be obtained from Eq. (19)
as

S =P !AH. (1)

2.2. Online modeling method of the secondary path

It can be noted that to obtain the impulse response of secondary path S by Eq. (21), the coefficient vectors
W(1), W(2), H(1) and H(2) must be known. Obviously, these vectors can be obtained using offline technology,
because the noise control filter can be set arbitrarily prior to starting the active noise control. Eq. (21) can be
thus derived by identifying H(1) and H(2) that are related to W(1) and W(2) set arbitrarily, respectively.
Another way to obtain W(1), W(2), H(1) and H(2) is proposed in Ref. [16]. However, it requires that the
updating of the coefficients of W(z) stop, which is not desirable for online secondary path modeling especially
in the case that the primary path and secondary path change fast and suddenly. To avoid this, in this section,
an effort to obtain Egs. (4) and (21) online will be made.

In Fig. 5, when applying the FXLMS algorithm, the updating equation of the noise control filter W(z)
is

W01+ 1) = WOn) + () | )X () (22)

where W(n) = [wo(n) wi(n) - wy—1(n) " is the coefficient vector of the adaptive filter at time n,
X(n)= [x(n) x(n—1) -+ x(n—M+1)]", and puy is the step size. Here, an error vector is defined as

F(n) = W(n) — W~ (23)

According to Eq. (22), we have
Fn+1)=Wrn+1)— W*
= F() + pye(n) [SEX () 4)

where W* is the optimal solution of W(n). From Egs. (22) and (24), it can be seen that the coefficient vectors of
the control filter are different at different iteration steps due to the estimation error. Especially before
convergence of W(n) or error e(n), the estimation error F(n) is large, and hence the difference between two
different iteration steps for specific intervals is large. To utilize the facts, we use the additional filter H(z) to
predict and model the overall path P(z)— W(z)S(z) online. Thus, it is required that the estimations of W(z) and
H(z) be carried out in parallel, which is feasible if the step sizes of adaptive filters W(z) and H(z) are selected
properly. Here, we define

W(n,z) = wo(n) + wi(m)z~" + wa(m)z"2 + -+ + wy_1(m)z~ MY, (25)

H(n,2) = ho(n) + m(m)z"" + ha(n)z"> + -+ + hy 1 ()=~ (26)

to express the transfer functions W(z) and H(z) at time n. In ideal case, H(n,z) is expected to converge to
P(z)—W(n,z)S(z), that is

H(n,z) = P(z) — W(n,z)S(z). 27
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According to Eq. (27), for any two different iteration times, such as the time n—k and time n—m (where

k=0,1,2,...;m=0,1,2,...; and k#m), the simultaneous equations can be obtained as
Hn—k,z)=P(z)— Wn —k,z)S(z) (28)
and
Hn—m,z) = P(z) — W(n—m,z)S(2). (29)

On the assumption that k<m and the characteristics of the secondary path and primary path would not
change between the time n—m and time n—k, eliminating P(z) from Eqgs. (28) and (29) yields
Hn—k,z)— Hn—m,z)

Wn—m,z)— Wn—k,z)
if Win—m, z) — W(n—k, z)#0. Similar to the derivation of Eq. (21), the impulse response of the secondary
path can be online derived as

S(z) = (30)

S = P '(n)AH(n), (31)
where
AH(n) = Hmn — k) — H(n — m)
= [ho(n —k)y—hy(n—m) hn—k)—hn—m)

hy(n—k) = hy1(n—m)]", (32)

wo(n — m) — wo(n — k) 0 e 0

wiln —m) —wi(n—k) wo(n — m) — wo(n — k) 0
P(n) = : . . : (33)

wi_im—m)—wr_(n—k) wro(n—m)—wr_o(n—k)y --- wo(n—m)—wyn—k)

and wy(n — m) — wo(n — k) #0.

2.3. Implementation considerations of the algorithm

Eq. (30) has been obtained by online method, and the secondary path can be estimated by Eq. (31),
theoretically. However, some problems need to be considered for specific implementation.

In practical ANC systems using a DSP board as the real-time controller, the computational load and
memory requirement are the main considerations for the choice of control algorithms. Heavy computational
burden and large memory requirement can increase the burden of the controller, and are directly related to the
increment of hardware cost. A good improved ANC algorithm should be one whose computational load is
much less than existing algorithms without deterioration in performance, such as the Delayed-X LMS
algorithm [17]. It can be seen from Eq. (33) that P(n) is an L x L matrix, and so its matrix inverse P~'(n) is also
an L x L matrix. Thus, huge memory is needed to obtain P(n), especially when L is large. The matrix P~'(n)
needs to be computed online with the updation of W(n) at each adaptation step. In addition, the computation
of P~!(n)AH(n) in Eq. (31) also needs L x L multiplication/addition operations. Therefore, modeling the
secondary path online by Eq. (31) needs much memory and the computatonal load is heavy.

Eq. (27) is derived on the hypothesis of H(n,z) modeling P(z) — W(n, z)S(z) ideally. In fact, however,
P(z) — W(n, z)S(z) is estimated by H(n, z) approximately. Therefore, some estimation errors are included in
H(n), and transferred to AH(#n). The errors will pile up with every solution from s, to s;, and may cause the
updation diverge eventually.

In addition, wy(n — m) — wo(n — k) may be zero because it is a random variable, during the control process.
Hence, the condition wy(n — m) — wo(n — k) #0 cannot be satisfied, and the impulse response of the secondary
path cannot be solved by Eq. (31).
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2.4. System identification technique

In this section, a new system identification technique is adopted to solve the problems mentioned above.
Eq. (30) shows that H(n — k, z) — H(n — m, z) is equal to the product of W(n—m, z) — W(n—k, z) and
S(z). If an adaptive filter S‘(z) is introduced and the coefficients of the adaptive filter are updated by LMS
algorithm so that the output of H(n —k, z) — H(n — m, z) is equal to the output of the product of S(z) and
Wmn—m,z)— W —k, z), then adaptive filter S(z) is expected to converge on S(z) with some errors.
Therefore, the system identification technique can be illustrated in Fig. 6, in which the identification operation
of the secondary path is parallel to operation of the active noise control process. An FIR filter is selected as the
adaptive filter here. Since all adaptive filter coefficients are simultancously updated, the estimation error
contained in H(n —k, z) — H(n —m, z) is widely and uniformly distributed over the coefficients of the
adaptive filter, and so the errors don’t diverge. The estimation error contained in H(n — k, z) — H(n — m, z),
which is expressed as R(n, z), is transferred to S‘(z). Accordingly, indeed, S(z) will converge on

S(z) = S(z) + S'(n,2) + R(n, z),

where §'(n, z) is the identification error of S(z) itself. So the estimation precision of S(z) is limited to an extent
in the proposed method because of the inherent estimation error R(n,z) in H(n —k, z) — H(n — m, z).
In frequency domain the reference signal x(n) and Eq. (30) can be expressed as X(e'") and

(34)

) _ Jgwy _ _ Jw
S(e") = Hn—k,e)— H(n—m,e")

W —m,ev)— Wn—k,e")’ (33)

respectively. From the derivation of Eq. (30), one can know that Eq. (35) comes into being only in the
frequency domain of the reference signal X(e") . In other words, H(n, z) only can model P(z) — W (n, z)S(z) in

White noise d; (n) . e,(n)
H(n-k, z)-H(n-m, z)
w(n) _
x,;(n) /
W(n-m, z)-W(n-k, ) S(2)
LMS
Fig. 6. System identification strategy to solve Eq. (30).
_ x(n) - dn) + > e(n)
e IPAW, |y
——1 W0 [ sw
x'(n)
IEMEETTY —
% o —fTZD
! e'(n)
v LMS
B I e W N () RPN G I
—’| H(n-k)-H(n-m) | T

W(n-m)-W(n-k)

Online secondary path ~ X; (n)
identification part

Fig. 7. Block diagram of ANC system with proposed online secondary path modeling method.
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the frequency range of X(¢'"). Even if the white noise is used as the input of the identification system, as shown
in Fig. 6, the secondary path model for the entire frequency domain cannot be obtained. Furthermore, it is
known to us that in order to attenuate the primary noise correlated with the reference signal, the secondary
path only needs to be estimated in the frequency range of the reference signal X(e). More importantly, the
system identification part is separated from the ANC part. Therefore, the reference signal may be used as the
input of the identification system, which simplifies the ANC system. The proposed algorithm can be further
illustrated in Fig. 7.

In Fig. 7, the proposed algorithm requires three adaptive filters, i.e., the noise control filter W(n), additional
filter H(n), and the secondary path modeling filter S(n) to run online, and to be updated simultaneously at each
adaptation step. The updating equation of W(n) is shown in Eq. (22), the updating equations of H(n) and S(n)
are

H(1+ 1) = HO» + 1 X ()¢ ), (36)
where py; is the step size of H(n),

¢'(n) = e(n) — &n) = d(n) — y'(n) — X" (mH(n), (37)
S(n+1) = S(n) + psXi(nei(n). (38)

where pg is the step size of S(n), Xi(n) = [Xi(n) xi(n—1) -+ xin—L+ D],
ei(n) = din) — y,(n) = di(n) — X,T(n)S(n), (39)
di(n) = X" (n)AH(n), (40)
xi(n) = X (n)AW(n), (41)

where AW(n) = W(n —m) — W — k), AH(n) =H(n — k) — H(n —m). The operation procedure of the
proposed algorithm is summarized as follows:

(1) At time n = 0, the algorithm is initialized first. The initial coefficients vectors of adaptive filters, W(n) and
H(n), are set to be 0, respectively, S(n) issettobe S0)=[a 0 --- 0]7, and a=£0.

(2) At time n, the coefficient vectors H(n—k), H(n—m), W(n—k) and W(n—m) (when n<k, H(n—k), H(n—m),
W(n—k) and W(n—m) are all zero vectors; when k<n<m, H(n—m) and W(n—m) are zero vectors) are
obtained. Then AW(n) = W(n—m)—W(n—k) and AH(n) = H(n—k)—H(n—m) are computed. W(n) and
H(n) are updated by Eqgs. (22) and (36), respectively.

(3) Compute dn), y{n) and din), update S(n) by Eq. (38).

(4) At time n+ 1, repeat operations (2) and (3).

From Fig. 7 and the operation procedure of the algorithm, it should be noted that it is necessary to set the
initial coefficients of S(n) to be a nonzero vector to ensure the algorithm to work. For convenience, S(O) =
[a 0 --- 0]%or S(0) = [0 0 --- a]"isusually set. Table 1 presents the computational loads (number
of multiplication/addition operations) of the ANC system with the proposed algorithm and other secondary
path modeling algorithms. For brevity, in Table 1 and the following sections, the online secondary path

Table 1
A comparison of computational loads of the proposed algorithm and other modeling methods

ANC system with online secondary path modeling algorithm Multiplication/addition operations

Constant injection noise method (Zhang’s method) 2M+2N+3L

Variable injection noise method (Lan’s method) 2M+2N+3L+1

Proposed algorithm 3M+3N+3L

Simultaneous equation method (Fujii’s method) When updating W(z) Updating H(z) Estimating S‘(z)

2M+L M+2N K(M+N+2L)
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modeling algorithms using injection noise in Refs. [7,11] are called constant injection noise method and
variable injection noise method, respectively, according to the characteristics of their injected noise. In this
table, M, L, and N are the lengths of the control filter W#(z), secondary path modeling filter S‘(z), and the
additional filter H(z), respectively. It is necessary to point out that in the simultaneous equation method in
Ref. [16], W(z), H(z) and S‘(z) are not updated simultaneously at one adaptation step in parallel, but are
estimated in three separate processes. So the computational loads in different processes are different, as shown
in Table 1 where K is the number of iterations required to estimate S(z). It can be seen that the computational
load of the proposed algorithm increases slightly compared to that of the modeling methods with injection
noise due to the operations in Egs. (40) and (41), but much lower than that of the process of estimating S‘(z)
with Fujii’s method, especially when large K is needed to obtain a perfect estimation of 5’(2). In addition, only
2L+ M+ N multiplication/addition operations are needed for updating S(n) at each adaptation step in the
secondary path modeling part with the proposed algorithm, which is much less than that of solving Eq. (31).

3. Effects of parameter selection on the algorithm

Eq. (27) is the premise of the proposed algorithm. According to Eq. (34), the online modeling precision of
secondary path depends on the estimation error R(n,z). Because the noise control filter W(n) is updated by
Eq. (22), the overall path P(z) — W(n, z)S(z) is a time-varying system. Especially before convergence of the
coefficients of W(n), the time varying is fast. In order to predict and model P(z) — W (n, z)S(z) fast and well by
H(n), the convergence speed of H(n) should be faster than that of W(n). So the step sizes of W(n) and H(n)
should satisfy the condition

Hp > - (42)
In Fig. 7, W(n—m)—W(n—k) and H(n—k)—H(n—m) are the differences of the coefficient vectors of the
adaptive filters W(z) and H(z) between the time n—k and time n—m. In the ideal case that P(z) — W (n, z)S(z) is
modeled by H(n,z) precisely, the difference of the interval 4 = (n — m) — (n — k) does not result in the
difference of the identification results of the secondary path. However, it has been known that
H(n—k)—H(n—m) includes errors. The different choices of A4 may result in different values of
H(n—k)—H(n—m) and different proportions of estimation error R(n,z) to H(n —k, z) — H(n — m, z), and
thus result in the difference of the identification results. Therefore, it will be discussed in frequency domain
how different choices of 4 affect the identification of secondary path in the following section.
If the optimal solutions of H(n—k,e™) and H(n—m,e") are expressed as H*(n—k,e") and
H*(n — m,e"), and the estimation errors contained in H(n — k,e™"™) and H(n — m,e") are expressed as H'(n —
k,e") and H'(n — m,e"), respectively, then

Hn—k,e") = H*(n—k,e")+ H'(n — k,e"), (43)

Hn—m,e") = H*(n — m,&") + H'(n — m,e") (44)
and
Hn —k,e") — Hin —m,e")
= H*n—k,&")— H*(n—m,e")+ H'(n — k,e") — H'(n — m,&"). (45)

Thus, the estimation error contained in H(n—k,e")— H(n—m,e") can be expressed as
R(n,e") = H'(n — k,e"™)—H"(n — m,e"), which is a perturbation term that can be transformed to a
perturbation noise in dyn). So H(n—k,z)—H(n—m, z) in Fig. 6 can be decomposed as H' (n—k, z)—H (n—m, z)
and H' (n—k,z)—H (n—m, z), and dj(n) can be decomposed as d;(n) and d;"(n), as illustrated in Fig. 8 where
d/(n) is the perturbation noise produced by estimation error R(n,e™). Although d/(n) is correlated with the
input x(n), it is regarded as a disturbance on d;" (). R(n,&") or d/(n) can disturb the identification process and
degrade the identification performance of the secondary path filter. Here, we define the relative error

i R(n,e")
5(’7:6] ) - H*(I’l _ k, ejw) _ H*(n —m, ejw) :

(46)
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4’| H'(n-k, z)-H (n-m, 2)

| H'(n-k, 2)-H (n-m, 2)

di (n)

x(n)

x;(n)

*)I W(n-m, z)-W(n-k, z)

Fig. 8. Block diagram of decomposed system identification strategy to solve Eq. (30) using the reference signal x(n) as the input.

Eq. (46) can be used to explain the effect of different A selection on the identification of the secondary path.
When 4 is large, the difference H(n — k) — H(n — m) is large, and hence H*(n — k, e")—H*(n — m, &) is large.
According to Eq. (46), &(n,e) is small, which indicates the ratio of estimation error R(n,e") to
H*(n — k,e™)—H*(n — m,e") is small, so the influence of error R(n,e") on the identification of the secondary
path is little. From Fig. 8, it can also be known that as the differences H(n—k)—H(n—m) and
W(n—m)—W(n—Fk) are larger, the term dyn) and the excitation signal x,(n) are larger, and the term d," (n) is
also larger. Therefore, the influence of d; (1) on d;"(n) becomes less, and the convergence speed and estimation
precision of system identification become higher.

Fig. 7 gives the general illustration of the proposed algorithm, in which H(n—k) is the coefficient vector of
H(z) at time n—k that is k steps earlier than the time n. It can be known that W(n—m)—W(n—k) and
H(n—k)—H(n—m) are not nonzero vectors and S(n) is not updated until H(n—k) = H(1) and W(n—k) = W(1)
at time n = k+ 1. The coefficient updating of S(n) is thus delayed k steps. Therefore, k is best chosen as zero so
as not to delay the response of the system identification part.

Assuming that H(n,z) is equal to P(z) — W(n, z)S(z) for any time n, one can understand that the vectors
H(n—k) and W(n—k), k steps earlier than the time n, and the vectors H(n—m) and W(n—m), m steps earlier
than the time n, are needed in order to obtain the entire Eq. (30) and update S(n), if no a sudden change of the
secondary path occurs between the interval. However, if the secondary path has a sudden change at the time
n = n—I (k<I<m) during the adaptation process between the time n—m and time n—*k, S(n) will experience
wrong adaptations of m—/ steps. In fact, S(n) may experience more wrong adaptations than that because it
needs a convergence process for H(n,z)to estimate P(z) — W(n, z)S(z). From the above analysis, it can be
known that the larger 4, i.e., the larger the time spans of Eq. (30), the slower the response of the online
identification system to sudden change of the secondary path is.

Here, it is necessary to point out that the initial wrong adaptations of S(n) are not harmful to the online
modeling of the secondary path for the proposed algorithm. This is because the wrong adaptations of W(n)
caused by the wrong adaptations of S(n) result in the enlargement of F(#), followed by the magnification of the
differences W(n—m)—W(n—k) and H(n—k)—H(n—m) which further result in the enlargement of d{n) and the
excitation signal x,(n) , and hence the updating of S(n) is speeded up.

4. Simulation results and discussions

Many computer simulations have been conducted to verify the effectiveness and evaluate the performance
of the proposed algorithm. The simulations will be presented in three sections. In the first section, we
demonstrate the effect of different choices of interval 4 on the online secondary path identification. In the
second section, we demonstrate the modeling performance of the proposed algorithm. In the third section, we
demonstrate the control effect with the online secondary path modeling.

In the simulations, the models of the primary path and secondary path are all chosen as the FIR filter
models. The primary acoustic path is

P(z) =082 +0.6z710 — 0.2z —0.5z712 = 0.1z7" 4 0.4z~ — 0.05715. (47)
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The secondary acoustic path is
S(z) =z 42520+ 1.76277 4+ 0.1527% — 0.482527° — 0.18625z7' — 0.0057 ', (48)

There is a zero z = 1.5 outside the unit circle and five samples delay in the secondary path, which is a non-
minimum-phase system. It contains the main characteristics of the real secondary path. The sampling
frequency used for simulations is set at 2000 Hz. The initial values of the adaptive filters W(n) and H(n) are set
to zeros. The initial value of S(n) isS(0)=[1 0 --- 0]". The normalized versons of FXLMS and LMS
algorithms are used. The filtered-X NLMS (FXNLMS) algorithm is used to update W(n), and NLMS
algorithm used to update H(n) and S(n).

4.1. Effect of interval A on online secondary path modeling

The parameters used in the section are selected as follows: the adaptive filter length is L = M = N = 12, the
primary noise x(#) is assumed to be a sinusoid wave of unitary amplitude with frequency 230 Hz, the step sizes
for updating W(n), H(n) and S(n) are puy = 0.005, uy = 0.2, and ug = 0.01, respectively, and k is chosen as
zero. Fig. 9 shows the estimation errors of the secondary path versus interval 4. Here, only the simulation
results for 4 from 0 to 120 are given, and the estimation errors shown in Fig. 9 are the absolute errors.

It can be seen that the magnitude and phase errors are large and the fluctuating of the errors is also large
with different 4 when 4 is small. This indicates that the influence of the error R(n,e") on the identification of
the secondary path is great when 4 is small. As 4 gets larger, the influence becomes less, so both the estimation
errors and the fluctuating of the errors become small. When 4 = 1, the phase estimation error reaches 37°,
however the FXINLMS algorithm can converge due to the robustness of the algorithm itself, because the error
is less than 90° [18].

Fig. 10(a) shows the time history of the residual error e(n) when A4 = 15. Fig. 10(b) shows the time history of
the residual error e(n) when A4 = 120. The secondary path has a sudden change during the control process. The
first and second nonzero samples of the impulse response of secondary path change from 1 and 2.5 to 2 and
5.5, respectively, at the 2000th iteration. From the results in Fig. 10, it can be found that the residual errors all
have good convergence behavior in the two cases, which shows that the influence of the secondary path can be
compensated effectively by the proposed algorithm. But the time of starting converging for 4 = 120 is later
than that for 4 = 15, which confirms the conclusion that the larger the 4, the slower the response of the
identification system to a sudden change of the secondary path is.
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Fig. 9. The estimation error of the secondary path for different interval 4 at frequency 230 Hz with the proposed algorithm: (a) magnitude
error; (b) phase error.
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Fig. 10. Time history of the residual error e(n) for different interval 4: (a) 4 = 15; (b) 4 = 120. The secondary path has a sudden change at
the 2000th iteration.

4.2. Modeling performance of the proposed algorithm

In this section, the reference signal x(n) is assumed to be a zero-mean white noise with power of 0.1. For
convenience, the adaptive filter lengths are selected as L = M = N = 40. Other parameters are the same as
those in the simulations of the last section. To evaluate the modeling performance of the proposed algorithm,
the secondary path is first modeled with a 40-tap adaptive filter offline, and then online estimated impulse
responses of the secondary path are compared with the offline estimated model.

Fig. 11 shows the comparison of online and offline estimated impulse responses of the secondary path.
Fig. 12 shows the comparison of frequency responses of online and offline secondary path estimations. From
the comparison results, it can be seen that the proposed algorithm can online model the secondary path well in
the frequency range concerned.

To demonstrate the convergence behavior of the estimation error, the relative estimation error of the
secondary path is defined as AS(n) = ||§(n) — S(n)|I>/|1S(n)||%. Fig. 13 shows the convergence behavior of the
estimation error of the secondary path for different interval 4. It can be noted that the larger the interval 4,
the better the convergence behavior of the estimation error is. The estimation error curve of 4 = 150 is very
similar to that of 4 = 120; however, the difference between the estimation error curve of 4 = 60 and that of
A =30 is large. These results again demonstrate that as the interval 4 gets larger, the influence of the error
R(n,e") on the modeling of the secondary path becomes less, so does the influence of the difference of interval
A on the modeling. The overshoot at the initial updating stage is caused by the wrong adaptations of S(n), as
analyzed in Section 3 above.

Modeling performance of the proposed algorithm is compared by simulations with that of the online
modeling algorithms with injection noise listed in Table 1. It should be mentioned that the Fujii’s method
proposed in Ref. [16] isn’t included here, since in Fujii’s method, W(z), H(z) and S(z) are not updated
simultaneously at one adaptation step in parallel, but are estimated in three separate processes, and it is
required that the operations of updating W(z) stop for many iterations to estimate the additional filter H(z).
Therefore, the updating processes and convergence behaviors of three filters are not continuous, so it is not
appropriate to compare the method with the proposed and the injection noise methods. In simulations, for
convenience, the lengths of all filters in the algorithms considered are selected as 40 taps. The interval 4 is
chosen as 120. The primary noise powers for three algorithms are the same. The initial power of the injected
noise is chosen to be the proper ratio to the primary noise for the injection noise methods. Step sizes are 0.005
for the control filter and 0.2 for the additional filter in the three algorithms. Step size for updating the
secondary path modeling filter is 0.01 for the proposed algorithm and 0.0254 for the injection noise methods.
In total, 0.0254 is the optimal step size to ensure the convergence of the secondary path modeling. Using a
higher step size cannot accelerate the convergence speed; on the contrary, it can cause a divergence.

First of all, to show the effect of active noise control operation and the primary noise on the modeling
process with injection noise method, the offline modeling of secondary path is carried out. The power of the
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Fig. 12. Comparison of frequency responses of online secondary path estimation and offline estimated model.

white noise and the step size for offline method are the same as those for the online modeling method with
injection noise. To demonstrate the robustness of the proposed method and the ability of tracking sudden
change of secondary path, two cases where the secondary path changes suddenly are considered. For the first
case, the secondary path will experience a sudden change of the amplitude of the impulse response samples at
the 10,000th iteration, i.e., the first and second nonzero samples of the impulse response change from 1 and 2.5
to 2 and 5.5, respectively. The second case involves the change of the order of secondary path at the 10,000th
iteration, i.e., the secondary acoustic path will be changed to

Sp(z) =z 455277 +1.76z7% 4 0.15z27° — 0.4825271% — 0.18625z7!!
+1.28752712 4 0.1527"% 4 0.001875z7 14,
where the length of the FIR filter model of secondary path is increased from 12 to 15, the samples delay is

increased from 5 to 6, and the amplitudes of the coefficients of filter model are also changed. The second case
corresponds to the change of the position of microphone or speaker in practice.
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Fig. 13. Convergence behavior of the estimation error of the secondary path for different interval 4: (a) 4 = 150; (b) 4 = 120; (c) 4 = 60;
(d) 4 = 30.
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Fig. 14. Comparison of convergence behaviors of the estimation error of secondary path with different modeling methods with a sudden
change in the secondary path at the 10,000th iteration: (a) with a change of the amplitude of the impulse response of secondary path; (b)
with a change of the order of secondary path.

Fig. 14 presents the comparison of convergence behaviors of the estimation error of secondary path for
different modeling methods over this period of 18,000 iterations. Fig. 14(a) and (b) corresponds to the first and
second cases of the changes of secondary path, respectively. It is clear that the convergence behavior of the
proposed algorithm is different from the other modeling methods. The estimation error with the proposed
algorithm shows larger overshoots at initial updating stage and after sudden change than that of the modeling
methods with injection noise. However, the proposed method can converge faster and more stably after the
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overshoots. This demonstrates that the proposed algorithm can track the sudden change of secondary path
fast. The overshoot with the proposed method is again due to the wrong adaptations of S(n), which is helpful
to speed up the convergence of the algorithm, as mentioned earlier. For the methods with the injection of
auxiliary noise, the operation of ANC controller and the primary noise have a large effect on the secondary
path modeling process, as shown in Fig. 14, especially for the constant injection noise method in the case of
Fig. 14(b). In addition, it can be seen that the variable injection noise method performs better and is closer to
the offline modeling than the constant injection noise method at the initial stage and before convergence;
however it may tend to be unstable with the increase of iterations, as the first case in Fig. 14(a). This is because
before convergence, the injected noise is large, so the method converges fast and well, however the injected
noise is reduced greatly after the system converges. The estimation precision of the proposed algorithm is
limited to about 35 dB because of the inherent estimation error R(n, z). The injection noise method has higher
estimation precision since it is a signal-independent modeling method [7]. But the precision of 35dB is enough
to ensure the convergence of the FXNLMS algorithm because of its robustness.

Fig. 15 shows the convergence behavior of the coefficients of secondary path modeling filter S(n) using
different modeling methods with a sudden change of the amplitude of the impulse response of secondary path.
Fig. 16 shows the convergence behavior of the coefficients with the sudden change of the order of secondary
path. Fig. 15(a)—(c) corresponds to the first nonzero coefficient, the second nonzero coefficient, and the third
nonzero coefficient of the modeling filter S(n), respectively. Fig. 16(a)—(c) corresponds to the second nonzero
coefficient, the third nonzero coefficient, and the fourth nonzero coefficient of S(n), respectively. It can be seen
that in the two cases, the proposed algorithm can track and converge faster and more stably than the other
two online modeling methods after some large fluctuations at the initial stage or after the sudden changes. The
fluctuations correspond to the overshoots of the estimation error in Fig. 14, and the reason for that has been
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Fig. 15. Convergence behavior of the coefficients of the secondary path modeling filter S(n) using different secondary path modeling
methods: (a) the first nonzero coefficient; (b) the second nonzero coefficient; (c) the third nonzero coefficient, with a sudden change of the
amplitude of the impulse response of secondary path at the 10,000th iteration.
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methods: (a) the second nonzero coefficient; (b) the third nonzero coefficient; (c) the fourth nonzero coefficient, with a sudden change of
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explained above. At the same time, it is seen that the operation of ANC controller and the primary noise have
a large effect on the convergence of the coefficients of modeling filter for the constant injection noise method in
the second case in Fig. 16. In addition, it can be found that the convergence behaviors of the coefficients for
the variable injection noise method perform better and are closer to the offline modeling than that with the
constant injection noise method at the initial stage and before convergence; however, they tends to be unstable
with the increase of iterations in the first case in Fig. 15. This reason has been explained above. The presented
results verify the conclusions drawn from Fig. 14.

4.3. Noise attenuation performance of the ANC system with online secondary path modeling

Noise attenuation effect for a harmonic noise with the proposed algorithm has been shown in Fig. 10. In the
section, noise attenuation performance of the broadband ANC system with the proposed algorithm is
evaluated by simulations. The parameters and the primary noise power are the same as those in the last
section. Fig. 17 shows the time history of the residual error e(n) for two different A. It can be seen that the
convergence speed of the residual error for 4 = 30 is slower than that for 4 = 120 due to the larger fluctuating
during the estimation process of secondary path, as shown in Fig. 13(d).

Fig. 18 shows the time history of the residual error e(n) for 4 = 120 with three different online modeling
algorithms over this period of 36,000 iterations, during which the secondary path experiences a sudden change
of the amplitude at the 18,000th iteration. It is very clear that the convergence speed of the residual error with
proposed algorithm is much faster than that with injection noise methods, and a much lower residual error can
be obtained.

The spectrums of the residual error e(n) at the 18,000th iteration for 4 = 30 and 120 are presented in Fig. 19
with the 50 number of spectral averages. The results exhibit good noise attenuation in the frequency range of
interest. This shows that the influence of the secondary path on FXNLMS algorithm is compensated
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Fig. 17. Time history of the residual error e(n) for different interval 4: (a) 4 = 30; (b) 4 = 120.
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Fig. 18. Time history of the residual error e(n) with different online secondary path modeling algorithms: (a) constant injection noise
method; (b) variable injection noise method; (¢) proposed method. The secondary path has a sudden change at the 18,000th iteration.

effectively by the proposed algorithm. In addition, combining Figs. 13, 16 and 18, it should be noted that
although the estimation error of the secondary path is larger for 4 = 30, the noise attenuation isn’t much
worse than that for 4 = 120 when the residual errors converge at the stable level after18,000 iterations. This is
attributed to the robustness of FXNLMS algorithm. Fig. 20 shows a comparison of the spectrums of the
residual error e(n) with two injection noise algorithms. It can be seen that the variable injection noise method
can obtain lower residual error than the constant injection noise one. However, comparing Figs. 19 and 20, it
is clear that ANC system with proposed algorithm exhibits the best broadband noise attenuation performance.
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injection noise: (a) with the constant injection noise method; (b) with the variable injection noise method.

The results demonstrate that the proposed online modeling algorithm has the distinct advantage of reducing
the residual noise greatly.

5. Conclusions

The existing conventional online secondary path modeling algorithms have the characteristics that the
operation of the ANC controller and the modeling of the secondary path are mutually interfered. The
unwanted disturbances can badly affect the performance of the system, and the disturbances cannot be
eliminated radically. A new online secondary path modeling algorithm has been proposed. The method does
not need feeding extra noise to the secondary source and also is different from the overall modeling method
using the control output. It utilizes the fact that some estimation errors are included in the control filter during
the process of updating. In the method, the modeling of the secondary path is relatively independent of the
active noise control system, and the reference signal is used as the input for the system identification. Thus, the
unwanted disturbances between the operation of the ANC and the identification of the secondary path are
eliminated completely, and the complexity of ANC system is greatly reduced. Some implementation
considerations and the effect of parameter selection on the online secondary path modeling have been
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discussed. Finally, computer simulations demonstrate that the proposed algorithm is effective. It can
compensate the influence of the secondary path, and track the sudden change of secondary path. More
importantly, it has the distinct advantage of reducing the residual noise greatly. However, since the method is
based on the utilization of the estimation errors included in the control filter and the reference signal is used as
the input for the system identification, this algorithm has the disadvantages of slow and unstable adaptation
and possibility to lose tracking of W(z) and S(z), compared with the signal-independent modeling approach
with injection of an auxiliary noise.
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